Publications

Found 146 results
Author Title [ Year(Desc)]
Seung HS, Sompolinsky H.  1993.  Simple models for reading neuronal population codes. Proceedings of the National Academy of Sciences of the United States of America. 90:10749–10753.
Hansel D, Sompolinsky H.  1993.  Solvable model of spatiotemporal chaos. Physical Review Letters. 71:2710–2713.
Grannan E.R., Sompolinsky H, Kleinfeld D.  1993.  Stimulus Dependent Synchronization of Neuronal Assemblies.. Neural Computation 5, 550..
Ranit A-B.  1993.  Theoretical Issues in Learning from Examples. In Proceedings of the Third NEC Symposium on Computational Learning and Cognition..
Ginzburg I., Sompolinsky H.  1994.  Correlation Functions in a Large Stochastic Neural Network.. in Advances in Neural Information Processing Systems. Cowan J.D., Tesauro G. and Alspector J., editors, 6, 471-476..
Sompolinsky H, Tsodyks M..  1994.  Segmentation by a Network of Oscillators with Stored Memories.. Neural Computation 6, 642-657..
Barkai N, Sompolinsky H.  1994.  Statistical mechanics of the maximum-likelihood density estimation. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 50:1766–1769.
Ginzburg II, Sompolinsky H.  1994.  Theory of correlations in stochastic neural networks. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 50:3171–3191.
Barkai N, Seung S, Sompolinsky H.  1995.  Local and global convergence of on-line learning. Physical Review Letters. 75:1415–1418.
Sompolinsky H, Barkai N., Seung HS.  1995.  On-line Learning of Dichotomies: Algorithms and Learning Curves.. in Advances in Neural Information Processing Systems. Cowan J.D., Tesauro G. and Alspector J., editors, 7..
Ben-Yishai} R{, Bar-Or} RL {, Sompolinsky H.  1995.  Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 92:3844–3848.
Hansel D, Sompolinsky H.  1996.  Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience. 3:7–34.
van Vreeswijk C, Sompolinsky H.  1996.  Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science {(New} York, {N.Y.)}. 274:1724–1726.
Mato G, Sompolinsky H.  1996.  Neural network models of perceptual learning of angle discrimination. Neural Computation. 8:270–299.
Kim JW, Sompolinsky H.  1996.  On-line Gibbs learning. Physical Review Letters. 76:3021–3024.
Yoon H, Sompolinsky H.  1999.  The effect of correlations on the Fisher Information of population codes.. in Advances in Neural Information Processing Systems 11. Kearns M.J., Solla S.A., and Cohn D.A., editors. MIT Press, Cambridge MA..
Lee DD, Sompolinsky H.  1999.  Learning a continuous hidden variable model for binary data.. in Advances in Neural Information Processing Systems 11. Kearns M.J., Solla S.A., and Cohn D.A., Editors. MIT Press, Cambridge MA..
Dietrich R., Opper M., Sompolinsky H.  1999.  Statistical mechanics of Support Vector networks.. Physical Review Letters 82, 2975..
Lee D., Rokni U., Sompolinsky H.  2000.  Algorithms for independent components analysis and higher order statistics.. in Advances in Neural Information Processing Systems 12. Kearns M.J., Solla S.A., and Cohn D.A., Editors. MIT Press, Cambridge MA..

Pages