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I. THE FACTORIZED BAYESIAN DECODER

In this section we consider the case where RGC response is instantaneous. We first define the

problem mathematically (part A). We then derive the ideal Bayesian decoder (part B) and the

factorized Bayesian decoder (part C). The implementation of the factorized decoder to the case of

binary pixels yields equations (2)–(5) of the main text (part D, Eqs. (S21)–(S23) and (S25)). In

simulations we used a version of the decoder in which time is discretized, as described in part E.

Finally, we present a comparison between the factorized decoder and the ideal decoder for small

1-dimensional images (part F).

A. The problem

We assume a 2D image of n x n pixels with fixed intensities {si}. The image shifts with time

with a trajectory x (t). For simplicity, we assume that changes in x(t) occur only at discrete times,

separated by fixed intervals of duration ∆t. Eventually we will take the limit of ∆t → 0. The

trajectory is drawn by a Markov process with a transition matrix T :

P [x (t + ∆t) | x (t)] = δx(t+∆t),x(t) + T [x (t + ∆t) | x (t)] ∆t (S1)

where

∑

x

T
(

x | x′
)

= 0 (S2)

and the summation is over all N possible values of x. The derivations below are valid for any

choice of the transition matrix. To describe two-dimensional diffusion we choose

T (x | x′) =



















D , |x − x′| = 1

−4D , x = x′

0 , |x − x′| > 1

(S3)

We define the initial shift to be x (0) = 0. There is a set of n x n neurons, each observing a single

pixel. The response ri (t) of neuron i is an inhomogeneous Poisson process, whose instantaneous
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rate depends on the incident image pixel si−x(t)

P [ri (t) | si−x] = δri(t),0

[

1 − λ
(

si−x(t)

)

∆t
]

+ δri(t),1λ
(

si−x(t)

)

∆t (S4)

where we assumed that ∆t is sufficiently small that in each interval the neuron emits at most one

spike. The function λ describes the relation between instantaneous firing rate and incident pixel

intensity. We assume that given the stimulus, the neurons are uncorrelated. In the following, we

denote the vectors of pixel intensities and neural responses by omitting the index i, i.e. by s and

r (t), respectively. The problem is to infer, at any time t, the fixed vector of pixel intensities s,

given the past spike trains r (0) , ..., r (t). Specifically, we are interested in the continuous time

limit, i.e. ∆t → 0.

B. The Bayesian filter

The optimal Bayesian estimation requires a computation of the posterior distribution

P [s, x (t) | r (0) , ..., r (t)], which we denote more shortly by P (s, x; t). This distribution can be

marginalized over x (t) to obtain the the posterior of s. P (s, x; t) can be computed iteratively by

P (s, x; t) =
1

Z

N
∏

i=1

P [ri (t) | si−x]

N
∑

x′=1

P
(

x | x′
)

P
(

s, x′; t − ∆t
)

(S5)

where Z is a normalization constant. We substitute Eqs. (S4) and (S1) in Eq. (S5), and take

∆t → 0. At times when there are no spikes P (s, x; t) evolves smoothly according to

∂P (s, x; t)

∂t
=

[

Rtot (t) −
N
∑

i=1

λ (si)

]

P (s, x; t) +
N
∑

x′=1

T
(

x | x′
)

P
(

s, x′; t
)

(S6)

where Rtot (t) is the total expected firing rate,

Rtot (t) =
∑

s,x

P (s, x; t)
N
∑

i=1

λ (si) (S7)

When there is a spike at neuron i at time ti, P (s, x; t) evolves discontinuously according to

P (s, x; ti+) =
1

Ri (ti−)
λ (si−x)P (s, x; ti−) (S8)

where Ri (t) is the firing rate expected at neuron i

Ri (t) =
∑

s,x

λ (si−x) P (s, x; t) (S9)
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C. The factorized approximation

In the factorized approximation we approximate the posterior as a product of probabilities for

position and for each pixel,

P (s, x; t) ∼= P (x; t)

N
∏

i=1

Pi (si; t) (S10)

To update P (x; t) and Pi(si; t) we first use Eq. (S5). We then recast the updated p(s, x; t) into

the factorized form by marginalizing it on x and si to obtain the updated P (x; t) and Pi(si; t),

respectively. This procedure minimizes the Kullback-Leibler divergence between p(s, x; t) and the

updated factorized approximation. We insert Eq. (S10) into Eq. (S6), and obtain the dynamics of

the factorized posterior when there are no spikes

∂P (x; t)

∂t
=

N
∑

x′=1

T
(

x | x′
)

P
(

x′; t
)

(S11)

∂Pi (si, t)

∂t
= [ρi (t) − λ (si)]Pi (si, t) (S12)

where ρi (t) is the firing rate expected by the neuron which at time t observes si

ρi (t) =
∑

si

λ (si) Pi (si, t) (S13)

Similarly, we insert Eq. (S10) into Eq. (S8) to obtain the discontinuous change in the factorized

posterior when neuron i spikes

P (x; ti+) =
1

Ri (ti−)
ρi−x (ti−)P (x; ti−) (S14)

where

Ri (t) =
∑

x

ρi−x (t)P (x; t) (S15)

and

Pk (sk, ti+) = Pk (sk, ti−) (S16)

×
1

Ri (ti−)



λ (sk)P (x = i − k; ti−) +
∑

x 6=i−k

ρi−x (ti−)P (x; ti−)





which can be rewritten as

Pk (sk, ti+) =

{

1 +
[λ (sk) − ρk (t)]P (x = i − k; ti−)

Ri (ti−)

}

Pk (sk, ti−) (S17)

or, using Eq. (S14), as

Pk (sk, ti+) =

{

1 +
[λ (sk) − ρk (t)]P (x = i − k; ti+)

ρk(ti−)

}

Pk (sk, ti−) (S18)



5

D. The binary si case

When si are binary variables, we can describe Pi (si, t) by

mi (t) = Pi (si = 1, t) (S19)

In this case, we can write the firing rate function λ (si) as

λ (si) = λ0 + ∆λsi (S20)

where λ0 is the firing rate for si = 0, λ1 is the firing rate for si = 1, and ∆λ = λ1 − λ0. The

evolution of P (x, t) in the absence of spikes is unchanged from Eq. (S11)

∂P (x; t)

∂t
=

N
∑

x′=1

T
(

x | x′
)

P
(

x′; t
)

. (S21)

This is equation (2) in the main text, where the operator D∇2 in discrete space represents the

transition probabilities T (x|x′) of Eq. (S3). The evolution of mi (t) in the absence of spikes is

derived from Eq. (S12) and yields Eq. (3),

∂mi (t)

∂t
= −∆λ [1 − mi (t)] mi (t) (S22)

When neuron i fires a spike, P (x, t) is updated by [see Eq. (S14)]

P (x; ti+) =
1

Ri (ti−)
λ (mi−x (ti−)) P (x; ti−) (S23)

where

Ri(t) = λ0 + ∆λ
∑

x

mi−xP (x; t) (S24)

[Eq. (4)] and from Eq. (S18) we find that mk (t) is updated by

mk (ti+) =

{

1 +
∆λP (x = i − k; ti+) [1 − mk (ti−)]

λ (mk(ti−))

}

mk (ti−) (S25)

This can be written in the form of Eq. (5) by defining the nonlinear transfer function φ(m) =

∆λm(1 − m)/(λ0 + ∆λm).

E. Large ∆t

In the above derivation we took the limit ∆t → 0. This limit is relevant for biological imple-

mentation, and it simplifies the equations. However, for the purpose of computer implementation
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it requires taking a very small time step, such that at any given time step the probability that any

neuron fires a spike is small. This constraint becomes more restrictive as the number of neurons

in the model increase. To allow faster computer implementation, here we derive the algorithm

without assuming a small time step. When λi∆t ≪ 1 the implementation of this algorithm should

be identical to the original algorithm up to small truncation and roundoff errors.

Our starting point is the equation of the full Bayesian filter (Eq. S5) which applies for non-

vanishing ∆t. Next, we apply the mean field approximation (see section on mean field approxima-

tion above) and derive the update rules:

P (x; t) =
1

Z
P ′ (x; t)

∏

i

∑

si

P [ri+x (t) | si] P (si; t − ∆t) (S26)

where

P ′ (x; t) =
∑

x′

P
(

x | x′
)

P
(

x′; t − ∆t
)

(S27)

and

P (si; t) =
∑

x

P (x; t)
P [ri+x (t) | si] P (si; t − ∆t)

∑

s′i
P [ri+x (t) | s′i] P (s′i; t − ∆t)

(S28)

Inserting (S4) into (S26) we obtain the following update rule for P (x; t)

P (x; t) =
1

Z
P ′ (x; t) exp

[

∑

i

ri+x (t) log
ρi (t − ∆t)∆t

1 − ρi (t − ∆t) ∆t

]

(S29)

where ρi (t) is defined in (S13). Similarly, by inserting (S4) into (S28) we obtain the update rule

for P (si; t)

P (si; t) = P (si; t − ∆t) (S30)

×
∑

x

P (x; t)

[

ri+x (t)
λ (si)

ρi (t − ∆t)
+ (1 − ri+x (t))

1 − λ (si)∆t

1 − ρi (t − ∆t)∆t

]

Keeping terms up to first order in ∆t yields

P (si; t) = P (si; t − ∆t) ×

{

1 − [λ(si) − ρi(t − ∆t)]∆t

+
∑

x

P (x; t) ri+x (t)
λ (si) − ρi(t − ∆t)

ρi (t − ∆t)

}

from which the continuous time limit of Eqs. (S12) and (S18) follows by taking the limit ∆t → 0.
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FIG. S1: Comparison of the factorized decoder (full traces) with the ideal Bayesian decoder (dashed traces)

for small, one-dimensional images containing 10 pixels. Accuracy (fraction of correctly estimated pixels),

averaged over 1000 presentations of random images, is shown as a function of time for two values of the

diffusion coefficient (legend).

F. Comparison with the ideal filter

For small one-dimensional images, we can compare the performance of the factorized decoder

with that of the ideal Bayesian decoder. Such a comparison is shown for images containing 10

pixels in Fig. S1. As expected, the factorized decoder infers the pixels more slowly than the ideal

decoder. Further, the plots demonstrate that after a long presentation of the image, the factorized

decoder may converge on an imperfect estimate of the image. In contrast, the ideal decoder infers

all the pixels correctly if given enough time.

II. PERFORMANCE AS A FUNCTION OF IMAGE SIZE

A. Accuracy of tracking for a known image

We assume that the image is known and evaluate how well the decoder estimates the position

of the image at steady state. The pixels are assumed to be uncorrelated with an equal distribution

of on and off values. This part of the calculation applies to the optimal Bayesian decoder as well

as to the factorized one, since both of them have the same dynamics when the image is known.

Specifically, we consider the following quantity

log P (∆x) ≡ 〈log p(x(t) + ∆x)〉
x(t),r (S31)

where x(t) is the true position of the drifting image at time t. The averaging is performed over all

possible trajectories x(t) and over the ganglion cell firing patterns.
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For convenience we work with a one-dimensional image containing n pixels and assume that

image drift occurs in discrete steps: At each ∆t the image moves one step to the left, with prob-

ability D∆t, or to the right, with the same probability. Ultimately we will be interested in the

limit of small ∆t → 0. At this stage we only require that ∆t is sufficiently small such that any

individual neuron is unlikely to produce two spikes in a single time interval,

λ0∆t ≪ 1 , λ1∆t ≪ 1. (S32)

In addition we assume that D∆t ≪ 1.

The update of p(x, t) is:

p(x, t + ∆t) =
1

Z
p(r | x) {(1 − 2D∆t)p(x, t) + D∆t [p(x + 1, t) + p(x − 1, t)]} (S33)

To estimate the steady state behavior of p (x, t) we make use of the following approximations.

First, we approximate log p(r | x) by replacing it with its average over r. In the limit of large n

this quantity is the same for all values of x except for the true position of the image:

〈log p(r | x)〉 =







c0 x = x(t)

c0 − ndKL∆t x 6= x(t)
(S34)

where dKL∆t is the Kullback-Leibler distance per pixel between the distribution of firing patterns

given the correct image, and the distribution of firing patterns given a shifted version of the image,

dKL =
1

4
(λ1 − λ0)log

λ1

λ0
. (S35)

and where c0 is independent of x. In deriving this expression we made use of the assumption that

the pixels are drawn independently from a binary distribution. We thus replace the dynamics of

Eq. (S33) by:

log p(x, t + ∆t) = −log Z + ndKL∆tδ
x,x(t)

+ log {(1 − 2D∆t)p(x, t) + D∆t [p(x + 1, t) + p(x − 1, t)]} (S36)

where Z is determined from the normalization requirement on p. Here the spiking is no longer

considered as a stochastic process: The combined influence of all spikes on the Bayesian estimate

is encapsulated deterministically in the second term on right hand side of Eq. (S36). In the limit

∆t → 0,

d

dt
p(x) = ndKLδ [x − x(t)] p(x) + D [p(x + 1) + p(x − 1) − 2p(x)]

− ndKLp(x∗)p(x) (S37)
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As a further simplification we consider a particular trajectory, where the image remains at x(t) = 0

at all times. In other words, the image is static, but the estimator is tuned to a randomly drifting

image with statistics characterized by the diffusion coefficient D. At steady state we then have,

D [p(x + 1) + p(x − 1) − 2p(x)] + ndKLp(0) [δx,0 − p(x)] = 0 (S38)

This equation describes the steady state distribution of particles which are created by a point

source at x = 0 and undergo one-dimensional random diffusion. The particles are created at a rate

ndKLp(0) and are randomly removed, independent of their position, at the same rate such that

their total number remains constant in time. The parameter p(0) must be obtained self consistently

from the requirement that

∞
∑

−∞

p(x) = 1. (S39)

By dividing this equation by D we see that the solution depends only on the ratio ndKL/D.

Therefore doubling the diffusion coefficient has the same effect as reducing the number of pixels

by a factor of two. For two-dimensional images, however, n is replaced everywhere by n2. Hence

performance depends on the diffusion coefficient, scaled by the number of pixels. This is the main

result of this section. We proceed to analyze the form of the solution to Eq. (S38) in the 1-d case.

The solution to Eq. (S38) is found by assuming the ansatz

P (x) ∝ exp(−α|x|). (S40)

Inserting this expression in Eq (S38), we get

2 [cosh(α) − 1] =
ndKLp(0)

D
(S41)

From the normalization requirement (S39), p(0) = tgh(α/2). Therefore

α = sinh−1

(

ndKL

2D

)

(S42)

Fig. S2A shows a measurement of log P (∆x) (Eq. S31) from a long simulation of the factorized

decoder tracking a known one-dimensional image containing 1000 pixels. These results compare

well with the approximate analytical expression [Eqs. (S40),(S42)].

B. Accuracy of tracking for an unknown image

Here we consider the opposite limit where the image is completely unknown to the decoder.

This is the situation when the image is first presented to the decoder. We consider an approximate
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FIG. S2: A For large images the probability of position inferred by the decoder is sharply distributed

around the true position. Symbols and solid trace show log P (∆x) [Eq (S31)] as a function of ∆x, for a

one-dimensional image containing 1000 pixels. These results are compared with the analytical estimate,

Eqs. (S40) and (S42) (dashed trace). Parameters: λ0,1 = 10/100Hz, D = 200 pixels2/s. B Accuracy of

decoded pixels after a long presentation (1 s) becomes roughly independent of the number of pixels n2 when

plotted as a function of D/n. Data is shown for n = 10 (black), 20 (blue), 40 (red), and 80 (green), which

corresponds to 5 x 5, 10 x 10, 20 x 20, and 40 x 40 arcmin. All parameters are as in Fig. 3B.

decoder which assumes that the image moves only at discrete times, separated by regular intervals

of duration ∆t. We choose

∆t =
1

4D
(S43)

because over this time scale it is reasonable to assume that the image is static. In order to track

the position of the image accurately, the decoder must be able to infer the relative position of the

image in the second interval, compared to its position during the first interval, which we denote

by ∆x∗. The inference is based on the RGC spike counts observed during the first and second

intervals, which we denote by r and r′. In order for the decoder to successfully distinguish between

a shift ∆x and the true shift ∆x∗, the following quantity must be large compared to unity for any

∆x 6= ∆x∗:

dKL

[

p(r, r′ | ∆x) ‖ p(r, r′ | ∆x∗)
]

(S44)

This is the Kullback-Leibler divergence between the probability distribution of spike counts given

∆x and their distribution given ∆x∗. Assuming that pixels are statistically independent, and using

the instantaneous response property of the neurons, we obtain:

dKL

[

p(r, r′ | ∆x) ‖ p(r, r′ | ∆x∗)
]

= n2







0 , ∆x = ∆x∗

d̂KL , ∆x 6= ∆x∗
(S45)
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where

d̂KL =

∞
∑

r1=0

∞
∑

r2=0

[

∑

s

p(s)p(r1 | s)p(r2 | s) −
∑

s1,s2

p(s1)p(s2)p(r1 | s1)p(r2 | s2)

]

× log

[

∑

s′

p(s′)p(r1 | s′)p(r2 | s′)

]

(S46)

In this expression p(s) is the prior probability for pixels intensities which, in the following, we

assume is uniform, and the spike statistics are Poisson:

p(ri | s) =
e−λ(s)∆t [λ(s)∆t]ri

ri!
(S47)

For binary images we can write d̂KL as

d̂KL =
1

4
[J0,0 + J1,1 − 2J0,1] (S48)

where

Js1,s2
≡

∞
∑

r1=0

∞
∑

r2=0

p(r1 | s1)p(r2 | s2)log

[

p(r1 | 0)p(r2 | 0) + p(r1 | 1)p(r2 | 1)

2

]

(S49)

The decoder estimates whether the image has moved by correlating the spike trains in the two time

intervals. In the limit of small ∆t these firing patterns are sparse, and we expect the information

coming from the correlations to scale as ∆t2. A precise expansion in powers of ∆t yields

d̂KL = α(λ0, λ1)∆t2 + . . . (S50)

where

α(λ0, λ1) =
1

4
log

[

2(λ2
0 + λ2

1)

(λ0 + λ1)2

]

(λ1 − λ0)
2. (S51)

This expression is valid if λ0,1∆t . 1. The decoder can track the image accurately if n2d̂KL ≫ 1.

We thus obtain the requirement that

D ≪
nα1/2

4
(S52)

This result suggests that the value of D, beyond which performance starts to degrade, should scale

as n, the square root of the number of pixels, rather than by n2 as suggested by the tracking of a

known image (Sec. IIA). Indeed, when the accuracy of pixels inferred by the factorized decoder is

plotted as a function of D/n, the traces are seen to be roughly independent of D/n, Fig. S2B.
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III. TEMPORAL RESPONSE OF RETINAL GANGLION CELLS

We consider the situation where a temporal filter is involved in the response of RGCs. As before,

we assume that each RGC fires as an inhomogeneous Poisson process but instead of Eq. (S4) we

have

P [ri (t) | s,X] = (1 − ri) [1 − λi (s,X) ∆t] + riλi (s,X) ∆t (S53)

where the rate λi(s,X) is given by

λi(s,X) = λ0 + ∆λ

∫

dτf(τ)si−x(t−τ). (S54)

Here f(τ) is the temporal filter and we adopt the notation that X with a capital letter denotes a

full trajectory, and x(t) denotes the image position at a particular time t.

A. Ideal Bayesian Filter

We denote by P (s,X; t) the posterior probability of the image s and the trajectory X given all

the spikes emitted from time 0 up to time t. Between spikes,

∂P (s,X; t)

∂t
=

(

∑

i

λi(s,X) − Ri

)

P (S,x; t) +
∑

X′

T
(

X | X ′
)

P (s, Y ; t) (S55)

where

Ri =
∑

X′

∑

s′

λi(s
′,X ′)P (s′,X ′; t). (S56)

is the expected firing rate of neuron i. When neuron i spikes at time t = ti,

P (s,X; t+i ) =
λi(s,X)P (s,X; t−i )

Z
(S57)

where Z is a normalization factor, chosen such that the sum

∑

s′

∑

X′

P (s′,X ′; t+i ) = 1. (S58)

B. Factorized approximation

We can apply the factorized approximation while keeping track of probabilities for full trajec-

tories instead of only the current position:

P (s,X; t) ≃
∏

i

Pi(si; t)P (X; t). (S59)
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The update rules for pi(si; t) and P (X; t) are obtained from Eqs (S55), (S57) by marginalizing over

si and over the trajectory.

We begin with the updates between spikes. Evaluating the update rule for P (X; t) involves

averaging of the total firing rate over s given X. While this in general is complicated, it is simple

in the linear case,

∑

s

P (s; t)
∑

i

λi(s,X) = λ0 + ∆λ

∫

dτf(τ)
∑

i

∑

s

P (s; t)si−x(t−τ) (S60)

where we used the notation:

P (s; t) =
∏

i

Pi(si; t) (S61)

The last term reduces to

∑

i

∑

s

P (s; t)si−x(t−τ) =
∑

i

mi−x(t−τ)(t) (S62)

where mi(t) is the mean of si with respect to P (s; t). This quantity is independent of X, and this

leads to

∑

s

P (s; t)
∑

i

λi(s,X) = λ0 + ∆λft

∑

i

mi (S63)

where

ft =

∫

dτf(τ). (S64)

Hence only the diffusion term survives,

∂P (X, t)

∂t
=
∑

Y

T (X | Y )P (Y, t). (S65)

To compute the dynamics of Pi(si; t), we denote by Si the vector of all the sj except si, and write,

∫

dτf(τ)
∑

Si

P (Si; t)
∑

j

sj−x(t−τ) = ft





∑

j

mj + si − mi



 (S66)

Hence,

∂Pi(si; t)

∂t
= ∆λft(si − mi)Pi(si; t) (S67)

We next consider the update following a spike in RGC i. Here we need to compute:

∑

s

P (s; t)λi(s,X) = λ0 + ∆λ

∫

dτ f(τ)mi−x(t−τ) (S68)
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Hence,

P (X, t+i ) =
λ0 + ∆λ

∫

dτf(τ)mi−x(t−τ)

Ri
P (X, t−i ) (S69)

where

Ri = λ0 + ∆λ

∫

dτf(τ)
∑

x

mi−xpτ (x; t−i ) (S70)

Here pτ (x; t) equals the probability with respect to P (X; t) that x(t − τ) = x:

pτ (x; t) =
∑

X

P (X; t)δX(t−τ),x (S71)

For the probability of sk, we write

∑

X

P (X; t)
∑

Sk

P (Sk, t)si−x(t−τ) = pτ (i − k; t)(sk − mk) + Ri (S72)

so that,

Pk(sk; t
+
i ) =

[

1 +
∆λ

Ri
P̃ (i − k; t−i )(sk − mk)

]

pk(sk; t
−
i ) (S73)

where

P̃ (x; t) ≡

∫

dτ f(τ)pτ (x; t) (S74)

We note that the update rules for Pk(sk; t) do not require knowledge of the full distribution over

trajectories P (X, t): Only the marginals pτ (x; t) are required. Furthermore, the update rules for

the pixels have precisely the same form as in the case without temporal filtering, if P (x; t) is

replaced by P̃ (x; t). (In the case without temporal filtering we assumed that the firing rate λ(si)

can be written as λ(si) = λ0 +∆λsi). This is seen by comparing Eqs. (S67), (S70), and (S73) with

Eqs. (S12), (S15), and (S17), respectively.

Known trajectory

If the trajectory is known, the dynamics between spikes are given by Eqs. (S67) and (S73),

where in Eq.(S73) P̃ (x, t) is replaced by:

P̃ (x, t) =

∫

dτ f(τ)δX(t−τ),x. (S75)
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Rectification

So far we assumed that λ0 is sufficiently large that λi(t) remain positive at all times. In more

realistic models of RGC responses, the firing rate involves rectification:

λi(s,X) = φ

[

λ0 + ∆λ

∫

dτf(τ)si−x(t−τ)

]

. (S76)

Here we assume linear rectification:

φ(λ) =







λ , λ > λc

λc , λ < λc

(S77)

where λc is a (typically very small) cutoff firing rate. The precise treatment of rectification within

the factorized approach leads to complicated update rules. Instead, we use an approximation,

which reduces to the precise update rules derived earlier when there is no rectification.

To explain the approximation we consider the update rule between spikes. To derive the update

rule for pk(sk; t) we need to calculate the following quantity,

Ak = pk(sk)
∏

j 6=k





∑

sj

pj(sj)





∑

i

φ

[

λ0 + ∆λ

∫

dτ f(τ)si−x(t−τ)

]

(S78)

The derivative of pk(sk; t) between spikes can then be written in terms of Ak as

d

dt
pk(sk; t) = −Ak +

∑

j

Ajpk(sk; t) (S79)

The sum over i is the total firing rate from the whole population of RGCs. Due to the nonlinearity

it is difficult to calculate precisely the sum over sj. Our approximation is to replace, for each i,

the argument inside φ by an estimate based on the expected firing rate,

φ

[

λ0 + ∆λ

∫

dτ f(τ)si−x(t−τ)

]

≃ Θi ×

[

λ0 + ∆λ

∫

dτ f(τ)si−x(t−τ)

]

(S80)

where

Θi = Θ

[

λ0 + ∆λ

∫

dτ f(τ)mi−x(t−τ) − λc

]

(S81)

and Θ is the Heaviside function. In other words, the decoder estimates for each RGC whether its

output is rectified, based on its current estimate of the pixels. After making this approximation,

it is straightforward to evaluate Ak and in the binary case we get

∂mk(t)

∂t
= −∆λmk(t) [1 − mk(t)]

∑

x

P̃ (x; t)Θx+k (S82)
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where we use the notation mk(t) = Pk(sk = 1; t). A similar procedure yields an approximation

rule for the update following a spike in RGC i,

mk(t+) =
q1

[1 − mk(t−)] q0 + q1mk(t−)
mk(t−) (S83)

where

q1 = min
{

Rk + ∆λP̃ (i − k) [1 − mk(t−)] , λc

}

, (S84)

q0 = min
{

Rk − ∆λP̃ (i − k)mk(t−), λc

}

(S85)

and where Rk is given by Eq. (S70).

Comparison with the ideal decoder

In the case of a known trajectory [Eq. (S75)] and for a very small image (4 x 4 pixels) we can

compare performance of this decoder with the ideal Bayesian decoder, Fig. S3B. The factorized

decoder in this case matches almost precisely the ideal Bayesian decoder, and therefore provides

an estimated upper bound for performance in the case of an unknown trajectory. Further, we

expect performance for a known trajectory to depend only weakly on image size. This expectation

is confirmed by comparing Fig. 3S B (red trace) with Fig. 3 A (dashed trace).

C. Unknown trajectory - factorized decoder with trajectory filtering

In the full problem where the decoder jointly estimates the trajectory and the filter, we consid-

ered an approximate scheme, which we call the factorized decoder with trajectory filtering. The

decoder estimates the position of the image using the naive rules of Eqs. (S11) and (S14). Even

though the naive decoder ignores the temporal filter, it tracks the position of the image, with a

small delay δt ≃ 15 ms that matches the peak time of f(τ), Fig. S3C. The decoder then generates

an estimate of P̃ (x, t) as follows,

P̃ (x; t) =

∫

dτ f(τ)P (x; t − τ) (S86)

This estimate is used to update the pixel estimates mi(t) using Eqs. (S67) and (S73) using

Eqs. (S82) and (S83). The network architecture that could implement this decoding strategy

is shown schematically in Fig S3D. Because the estimate of P̃ (x; t) is delayed by δt, we introduce a

compensating delay in the spikes when updating Pi(si; t). Therefore the process of spike estimation
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starts only after a delay δt. In order to improve the trajectory estimate during the initial δt period,

we update Pi(si) during this period using the naive rules, Eqs. (S12) and (S17). After the initial

δt period, pixel estimation starts anew using Eqs. (S82) and (S83).

The factorized decoder with trajectory filtering performs significantly better than the naive

factorized decoder that ignores temporal filtering altogether, as demonstrated in Fig. S3E.

IV. PIECEWISE STATIC DECODER

The piecewise static decoder (Fig. 4C, gray trace) is defined as follows. Time is split into

intervals of duration T . The spikes emitted in each one of these time intervals are analyzed

separately to generate a likelihood estimate for each of the patterns sα (the 26 letters). This

estimate is given by

pα(t) =
1

Z(t)

∑

x

∏

i

p
[

ri(t) | sα
i+x

]

(S87)

where sα
i is the intensity of pixel i in pattern α, and the sum is over all possible translations of the

pattern. The decoder assumes that within a time interval the position of the image is static, and

all possible locations (represented in the sum by x) are equally likely. The spike count statistics

are Poisson,

p [r | s] =
exp[−λ(s)T ] [λ(s)T ]r

r!
(S88)

Finally, the decoder treats positions in different time intervals as if they are independent. Hence

the likelihood for each pattern is given by:

log Pα =
∑

t

log pα(t). (S89)

In a discrimination task, only the relative magnitude of Pα for different α is important. Therefore

it is sufficient for the decoder to evaluate the following quantities

Lα =
∑

t

log

{

∑

x

exp

[

−aα +
∑

i

ri(t)logλ
(

sα
i+x

)

]}

(S90)

where

aα =
∑

i

λ(sα
i )T (S91)

which represent the log likelihood up to an additive constant which is independent of α, and to

choose the pattern α for which Lα is maximal.
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V. ONLINE METHODS

Initialization

At time t = 0 all estimates in the what population are set to mi(0) = 0.5, i.e. to implement a

prior that on and off occur with equal probabilities. We arbitrarily label the position of the image

at time 0 as x(0) = 0. Therefore we set p(x = 0, t = 0) = 1. For all other x, p(x, t = 0) = 0.

Accuracy measurements

The representation in what cells is stabilized in time, but in different trials with the same

image it may converge at different spatial shifts. To accommodate for these shifts when measuring

accuracy, we first find the shift xm such that p (s | {mi+xm}) is maximized, where s is the true image

and p (s| {m}) ≡
∏

i [simi + (1 − si)(1 − mi)] . To measure accuracy we compare the maximum-

likelihood pattern (obtained by rectifying mi) with the image s at the shift xm.

Resolution of reconstruction

For reconstruction of images composed of pixels subtending 0.5 arcmins, a diffusion coefficient

D = 100 arcmin2/s corresponds to 400 pixels2/s. To estimate performance on reconstruction of

pixels spanning 1 arcmin, we modified our simulations in two ways: First, because four RGCs are

available to report on the value of each pixel, we increased firing rates by a factor of 4. Second, we

decreased the diffusion coefficient, in units of pixels2/s, by the same factor.

Temporal filter

In all numerical simulations with a temporal filter, we used a biphasic kernel of the form [15,19]

f(t) =
tn

τn+1
1

e−t/τ1 − ρ
tn

τn+1
2

e−t/τ2 (S92)

where τ1 = 5 ms, τ2 = 15 ms, n = 3, and ρ = 0.8.



19

100 200 300 400 500

−20

−10

0

10

20

30

0 50 100 150 200

λ [Hz]

A

0 200 400 600 800
0.5

0.6

0.7

0.8

0.9

1

Time [ms]

A
c
c
u

ra
c
y

B

5 arcmin
2

/sec

100 arcmin
2

/sec

C

Time [ms]

H
o

ri
z
. 
P

o
s
it
io

n

−50 0 50

∆t [ms]

C
(∆

t)
Retina

WhereWhat xi

y y = x + i

x’

D

0 100 200 300
0.5

0.6

0.7

0.8

0.9

1

E

Time [ms]

A
c
c
u

ra
c
y

FIG. S3: A Distribution of firing rates [Eq. (6) in Methods] measured over a long presentation of an image

containing 10 x 10 pixels and averaged over all RGCs. The diffusion coefficient D = 100arcmin2/s. In all

panels in this figure, λ0 = 20 and ∆λ is set such that the maximum possible firing rate is 200Hz. B For a

known trajectory and spikes generated with a temporal filter we compare performance of the ideal Bayesian

filter (dashed traces) and the factorized decoder of Eqs. (S82)–(S85) with known trajectory, Eq. (S75), which

takes into account the structure of the temporal filter (solid traces). The full Bayesian decoder can only be

implemented for very small images, hence the image contains only 4 x 4 pixels. Results are shown for two

values of the diffusion coefficient (legend). The resolution is 0.5 arcmin. C Tracking of the image position by

the naive factorized decoder which assumes that RGC response is instantaneous, when presented with spikes

generated from RGCs with a non-instantaneous response. Left: The true position (blue trace), and tracking

by the where cells: grayscale intensities represent the inferred position, marginalized over the vertical axis.

Right: correlation function of the true position and the mean estimated position. Tracking lags behind

the true position by about 16.5ms (vertical dashed line). This lag corresponds approximately to the sharp

peak in the temporal filter (Fig. 4A, inset). D Schematic architecture of a neural network that implements

the factorized decoder with trajectory filtering (Supporting Text). E Performance of the factorized decoder

with trajectory filtering (red trace), compared to the naive factorized decoder (black trace, as in Fig. 4C).

Parameters: 30 x 30 arcmin image, 1 arcmin resolution, D = 100arcmin2/s.


